- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Buizert, Christo (3)
-
Beaudette, Ross (2)
-
Brook, Edward J. (2)
-
He, Chengfei (2)
-
Severinghaus, Jeffrey P. (2)
-
Sowers, Todd A. (2)
-
Svensson, Anders (2)
-
Abe-Ouchi, Ayako (1)
-
Ahn, Jinho (1)
-
Alley, Richard B. (1)
-
Aoki, Shuji (1)
-
Blunier, Thomas (1)
-
Chappellaz, Jérôme (1)
-
Corr, Hugh (1)
-
Dunbar, Nelia W. (1)
-
Edwards, Jon (1)
-
Edwards, Jon S. (1)
-
Epifanio, Jenna A. (1)
-
Fegyveresi, John M. (1)
-
Fudge, T. J. (1)
-
- Filter by Editor
-
-
Thiemens, Mark (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Buizert, Christo; Sowers, Todd A; Niezgoda, Kyle; Blunier, Thomas; Gkinis, Vasileios; Harlan, Margaret; He, Chengfei; Jones, Tyler R; Kjaer, Helle A; Liisberg, Jesper B; et al (, Proceedings of the National Academy of Sciences)Thiemens, Mark (Ed.)Pleistocene Ice Ages display abrupt Dansgaard–Oeschger (DO) climate oscillations that provide prime examples of Earth System tipping points—abrupt transition that may result in irreversible change. Greenland ice cores provide key records of DO climate variability, but gas-calibrated estimates of the temperature change magnitudes have been limited to central and northwest Greenland. Here, we present ice-core δ15N-N2records from south (Dye 3) and coastal east Greenland (Renland) to calibrate the local water isotope thermometer and provide a Greenland-wide spatial characterization of DO event magnitude. We combine these data with existing records of δ18O, deuterium excess, and accumulation rates to create a multiproxy “fingerprint” of the DO impact on Greenland. Isotope-enabled climate models have skill in simulating the observational multiproxy DO event impact, and we use a series of idealized simulations with such models to identify regions of the North Atlantic that are critical in explaining DO variability. Our experiments imply that wintertime sea ice variation in the subpolar gyre, rather than the commonly invoked Nordic Seas, is both a sufficient and a necessary condition to explain the observed DO impacts in Greenland, whatever the distal cause. Moisture-tagging experiments support the idea that Greenland DO isotope signals may be explained almost entirely via changes in the vapor source distribution and that site temperature is not a main control on δ18O during DO transitions, contrary to the traditional interpretation. Our results provide a comprehensive, multiproxy, data-model synthesis of abrupt DO climate variability in Greenland.more » « less
-
Buizert, Christo; Fudge, T. J.; Roberts, William H. G.; Steig, Eric J.; Sherriff-Tadano, Sam; Ritz, Catherine; Lefebvre, Eric; Edwards, Jon; Kawamura, Kenji; Oyabu, Ikumi; et al (, Science)Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.more » « less
An official website of the United States government
